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A theory describing the coupling between radiative transport, thermal conduction, and velocity fluctu-
ations in postcombustion gases is described. The emission and absorption of radiant energy are taken to
be dominated by soot, distributed uniformly in space. The theory is local in the sense that the gas is
assumed to be unbounded. However, the temperature, velocity, and radiation fields can be both three-
dimensional and time-dependent. Moreover, the model can be thought of as describing any postcombustion
scenario in which the absorption coefficient is spatially uniform. Within the framework of the low Mach
number combustion equations, an exact representation of the velocity and radiation fields instantaneously
induced by fluctuations of any magnitude in the temperature is presented. This result is used to derive a
single scalar integro-differential equation for the temperature that incorporates the conservation of mass
and energy, together with an exact solution of the radiative transport equation. Some consequences of the
theory are illustrated by studying the response generated by a spherically burning fuel mass.

Introduction

The products of combustion resulting from the
burning of most hydrocarbon fuels are strong emit-
ters and absorbers of radiant energy. This is particu-
larly true of large fire scenarios, where soot partic-
ulate can account for 10%–15% of all the fuel mass.
Thus, the coupling between radiation fields and the
convective transport of mass and energy is a subject
of considerable importance. Two conditions must be
satisfied for these effects to be significant. First, the
fluctuations in temperature must be large enough for
radiative losses from high-temperature regions to be
competitive with thermal conduction. This implies
that the Boltzmann number, B, defined as a ratio of
conduction to radiation energy flux (see equation 21)
must be small. Second, the spatial domain occupied
by the combustion products must be large enough
for the radiation to be reabsorbed within the region
of interest. Thus, if j is the absorption coefficient
for the medium, and L is a macroscopic length scale,
then jL � O(1).

If the first of these conditions is not satisfied, then
radiative transport is unimportant. This is the case
typically treated in most direct numerical simula-
tions of turbulent combustion [1]. If jL K 1, then
the emitted radiation is lost to the boundaries of the
domain. In this case, which is common in enclosure
fire scenarios, the radiative losses are quite impor-
tant, but radiative transport is not coupled to the

flow field [2]. Two-dimensional transient simulations
of reacting flows with radiation losses have been per-
formed [3]. There also exist many simulations of
both enclosure fires [4] and outdoor scenarios [5]
that couple the radiative transport to the convective
transport and combustion models. However, all such
calculations rely on turbulence models that ignore
any interaction between temperature fluctuations
and the radiation field. Moreover, there is no way to
study the relationship between the velocity fluctua-
tions that are inevitably introduced by the tempera-
ture and radiation fluctuations that result from the
combustion processes.

This paper describes a theory of coupled radiative
transport and velocity fluctuations induced by local
temperature fluctuations in postcombustion gases.
The radiative properties are assumed to be domi-
nated by soot, which is uniformly distributed in
space. The theory is local in the sense that the gas
is taken to be unbounded, with a spatially uniform
absorption coefficient. However, the temperature
can vary spatially in three dimensions, subject only
to the condition that the fluctuations are confined to
a finite domain. The gray gas approximation is made,
with the Planck mean absorption coefficient given
by Atreya and Aggrawal as j � 11.86fvT [6]. This
representation of the absorption coefficient shows
that the soot mass fraction rather than the volume
fraction must be taken as constant for consistency.
An extended soot cloud with internal temperature
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fluctuations is certainly a plausible scenario for large
fire problems. Moreover, since the resulting theory
is cast in terms of exact analytical relationships, given
the constant coefficient gray gas assumption, it may
prove useful in other applications. Specifically, the
ability to couple radiative transport to a three-di-
mensional transient simulation with little computa-
tional overhead may be an attractive prospect for
direct numerical simulations of turbulent combus-
tion.

The goal of the analysis is to determine the radi-
ative heat-flux distribution and associated velocity
field as a function of the temperature fluctuation.
This is accomplished by employing a decomposition
of the velocity field into a solenoidal component con-
taining the vorticity and an irrotational component
accounting for the thermal effects. This has proved
an effective tool for analyzing fire-induced flow fields
both theoretically [7] and experimentally [8]. The
divergence of the radiative heat flux interacts instan-
taneously with the gas to produce the local expan-
sion. Under the assumptions stated above, the ra-
diative heat-flux vector is itself the gradient of a
scalar potential. This irrotational expansion is also
affected instantaneously by both the temperature
field and any chemical heat release occurring in the
gas. Thus, the radiation, temperature, and velocity
fields are closely correlated. The relationships be-
tween these quantities can be established explicitly
given the assumptions outlined above. In the next
section the mathematical model is developed as a
three-dimensional time-dependent theory. Follow-
ing this, the special case of a spherically symmetric
fluctuation field is considered in detail.

Mathematical Model

Consider a non-uniformly heated gas occupying
an unbounded domain. The gas is assumed to be a
gray radiatively absorbing medium with spatially ho-
mogeneous optical properties. The temperature
field in the gas has localized “hot spots” which may
be of any magnitude or shape but ultimately decay
to a uniform ambient temperature T�. Let j be the
absorption coefficient and I( be the radiant in-

rrr, X)
tensity. Since the gas is at ambient temperature far
from all the heated regions, it is convenient to write
the radiant intensity in the form

4rTr r�r rI( r, X) � � J( r, X) (1)
p

Then, J satisfies the equation
rr( r, X)

jrr r rr r r 4 4X •�J( r,X)�jJ( r,X)� [T( r) �T ] (2)�
p

The only boundary condition required is that J
vanish everywhere far from all the heated regions.

The quantity of most physical interest is the radiative
heat-flux vector It is defined in terms of Jr rq( r).
through the relation

r r rr r rq( r) � XJ( r, X) dX (3)�
The divergence of is the net radiant energy fluxrq
emitted from any point in the gas. This follows di-
rectly from the integral of equation 2 over all The

r
X.

result is the radiant energy balance

r r r 4 4�•q( r) � 4jr[T( r) � T ]�

r rr� j J( r, X) dX (4)�
The net energy emitted by radiation represents a

local sink of energy in the gas. As such, it induces
temperature and velocity fields whose spatial distri-
bution is determined by the conservation laws of
fluid mechanics. The equations expressing the con-
servation of mass and energy in the low Mach num-
ber approximation to reacting gas dynamics [9] take
the form

�q r� �• (qu) � 0 (5)
�t

�h r rq � u •�h � �• (k�T) � �•q � Q (6)c� ��t

Here, q, and h are, respectively, the density, ve-ru,
locity, and sensible enthalpy in the gas. The quantity
k is the thermal conductivity, while Qc represents the
rate of heat release per unit volume liberated by
chemical reactions.

For reasons that will become clearer below, the
momentum conservation equations are not needed
for the present analysis. However, the conservation
laws must be supplemented by an equation of state
which can be written in the form

qh � q h (7)� �

Here, the subscript � refers to ambient conditions
far from the heated regions of the domain. Physi-
cally, equation 7 assumes that the pressure will not
change much from its ambient value if the Mach
number remains small. In addition, the number of
internal degrees of freedom excited at the tempera-
ture range under consideration is taken to be the
same for each of the gaseous species that make up
the fluid.

The velocity field can always be decomposed into
a solenoidal divergence-free component and an ir-rv
rotational field ��. If the energy equation is added
to h times the mass conservation equation, the result
is an equation for the velocity potential in the form
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T
2 2q h � � � � k(T) dT� � �� �

T�

r� �•q � Q (8)c

The radiant heat flux can itself be expressed as the
gradient of a potential W when the absorption co-
efficient is spatially uniform. This representation is
derived explicitly for the case of a purely absorbing
medium [10]. Moreover, when scattering is in-
cluded, a similar representation (to be presented
elsewhere) can be derived. Thus, the radiant heat
flux can be written as

1rq � � �W (9)
j

2jr jr4 4 3W � (T ( r ) � T ) E (x) d r (10)o � 2 o� p x

r rx � j|r � r | (11)o

Here, E2(x) denotes the exponential integral func-
tion, and the integral is taken over all space. Substi-
tution of equation 9 into equation 8 and use of the
requirement that all potentials vanish far from the
heated regions yields the following general formula
for the velocity potential �.

T1 W
� � k(T�) dT� � � � (12)c�� �q h T j�� �

Qc2� � � (13)c
q h� �

The above result has a simple physical interpre-
tation. The velocity potential consists of two basic
parts. First, there is a local volume flux exactly op-
posed to the two components of the heat flux in-
duced by thermal conduction and radiative trans-
port, respectively. This velocity supplies exactly the
amount of mass needed to ensure mass conservation
for given local fluctuations in temperature. Note that
this flow is a redistribution rather than a creation of
volume. Second, a distributed source is generated
by the heat released by combustion, Qc. This com-
ponent of the velocity is a true source of volume. It
only acts while combustion energy is being released,
in contrast to the other components of the potential
field. However, while this term is active, it represents
a long range rather than a local contribution to the
velocity.

The above results can now be combined into a
generalized conservation law that incorporates con-
vective, diffusive, and radiative transport of mass and
energy into a single equation. This is accomplished
by substituting the various components of the veloc-
ity field into the mass conservation equation 5 to
obtain

�q 1r� �• (q(v � �� )) � �• (qk�T)c�t q h� �

1
� � �• (q�W) (14)

q h j� �

The terms on the left-hand side of equation 14 rep-
resent, in turn, the contributions of the unsteadiness,
mixing, expansion, and diffusion to the mass balance,
while the right-hand side represents the redistribu-
tion induced by radiative transport. All terms except
for the solenoidal velocity and heat release are de-rv
fined in terms of the temperature. Thus, once a com-
bustion model has been chosen, the only other equa-
tions needed to close the system are the momentum
equations and the solenoidal condition given by

r r r� � v � x; �•v � 0 (15)
The momentum equations in effect determine the
vorticity while the solenoidal condition deter-rx,
mines the corresponding velocity field.

Spherical Temperature Fluctuation

The processes described above can be best illus-
trated by considering a simple example. Assume that
a large region with a uniform soot mass fraction and
temperature at rest is subjected to a spherically
symmetric temperature fluctuation. The spherical
symmetry guarantees that the resulting motion is a
potential flow. Attention is focused on the postcom-
bustion decay of the temperature field under the
combined influence of radiation and diffusion. The
initial temperature field is determined from a simple
mixture-fraction-based combustion model that does
not explicitly deal with radiative transport [11]. More
detailed solutions to this problem including soot for-
mation and radiative losses have been obtained
[12,13]. However, the approach used by these au-
thors is quite different from that employed here, and
the full radiative transport equation is not solved.

To proceed, equation 12 is substituted into the
mass conservation equation, which takes the follow-
ing form for a spherically symmetric problem in the
absence of combustion

�q 1 1 � �T 1 �W2� qr k(T) �2 � � ���t q h r �r �r j �r� �

� 0 (16)
The next step is the calculation of the radiative con-
tribution to equation 16. To take advantage of the
symmetry in W, it is convenient to introduce a spher-
ical coordinate system in the space with as ther rr ro
pole and ho as the polar coordinate. Then

2 2x � j r � r � 2rr cos h (17)� o o o

Since T depends only on ro, the integrand in equa-
tion 10 is independent of the azimuthal coordinate.
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The integration over ho can then be carried out using
x(cos ho) as the variable of integration. The result is

�1 �W 1 2 4 4� � dr r jr (T (r ) � T )o o o �2 �j �r r 0

˜ ˜(I(j|r � r |) � I(j(r � r ))) (18)o o

1 E (z)22 2 2Ĩ(z)� exp(�z)�j (r � r ) (19)o� �jr zo

The problem is made non-dimensional as follows:
the temperature is represented in the form T �
T��(y, s). The dimensionless radial coordinate y
and time s are given by

2j k�
y � jr, s � t (20)

q C� p

The ratio of conduction energy flux to radiatively in-
duced energy flux is characterized by the Boltzmann
number, B, defined here as

jk T� �B � (21)4rT�

Then, assuming the specific heat Cp and the product
qk are not functions of temperature, equation 16
takes the form

1 ��
2� �s

�1 1 � 1 4� dy [� (y )�1] y K(y,y )o o o o� � �2 0By �y �

1 � ��2� y (22)� �2y �y �y

K(y,y )�exp(�|y�y |)�exp(�(y�y ))o o o

E (|y�y |) E (y�y )2 o 2 o2 2� (y �y ) � (23)o � �|y�y | (y�y )o o

Equation 22 is the simplest multidimensional
model that incorporates all the conservation laws for
both matter and radiation in a single equation. It is
multidimensional not only in the sense that it incor-
porates spherical symmetry as opposed to a planar
geometry, but it also allows many replicates of this
spherical object to coexist in the same region of in-
terest. This coexistence is possible because the influ-
ence of each heated sphere decays exponentially
with distance from its center. Thus, if the centers of
each of many such objects are spaced several times
the absorption length, j�1, apart, their interaction
is negligible. Under these circumstances, a library of
spherical radiating objects of varying size and tem-
perature can become the basis for an averaging pro-
cess that would assess the effects of spatial fluctua-
tions in temperature on emitted radiant heat flux.

The initial condition is determined by developing
an approximate solution for the combustion of a

spherical fuel blob in an oxidizing environment at
rest. The soot (or other absorbing material) in the
environment is assumed to be a product of combus-
tion generated elsewhere in a larger domain, which
is not the object of the current study. The initial ra-
dius Ro of the blob is small in the sense that jRo K
1. It is further assumed, following Ref. [11], that the
specific volume is a piecewise linear function of the
mixture fraction Z (r, t). Under these circumstances,
the mass conservation and mixture fraction equa-
tions form the basis of the solution. If r is the local
spherical radial coordinate measured from the cen-
ter of the blob, and vr is the radial velocity, these
equations take the form

� �2 2(qr ) � (qv r ) � 0 (24)r�t �r

�Z �Z 1 � �Z2q � v � qDr (25)r� � 2 � ��t �r r �r �r

The equations are solved by introducing a space-
like Lagrangian variable s(r, t) defined as follows

� �3 3 3 3(q s ) � 3qr (q s ) � �3qv r (26)� � r�r �t

Then, using (s, t) as the independent variables and
defining the variable diffusivity D by the relation q2D
� D�, the mixture fraction equation becomes2q�

4�Z D � r �Z�
� (27)2 � 2 ��t s �s s �s

The subscript � denotes ambient values of all physi-
cal quantities. Up to this point, equation 27 is exact,
given the assumptions stated above. An approximate
analytical solution is obtained by replacing the physi-
cal radius r by s in the right-hand side of the equa-
tion. This choice vanishes linearly at the origin as it
should, and is correct asymptotically as r → �. Since
r � s due to the expansion of the gas, the effect of
the approximation is to lessen the temperature de-
pendence of the diffusivity, which is realistic. The
result is the spherical diffusion equation, which is
solved subject to the initial condition

1/3Z(s, 0) � H((q /q ) R � s) (28)o � o

Here, H denotes the Heaviside step function, and qo
is the initial fuel density. The solution for Z takes the
form

1 1�x 1�x 2 s
Z� erf �erf �� � � � � �2 x p2 s 2 s� � (29)

2 21�x 1�x
exp � �exp �� � � � � � � � ���

2 s 2 s� �
2Ro1/3 2/3s � (q /q ) R x, t � (q*/q ) s (30)o � o o �

D�
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Fig. 1. Time evolution of radial profiles of temperature
in the case without radiation (as computed from equations
29–32). Five different times are shown. The t � 0 ms curve
was used as the initial condition for the computation with
radiation (equation 22).

Fig. 2. Temperature profiles for the B� 0.5 case.

The physical coordinate is recovered by integrat-
ing the first of equations 26 and using the postulated
linear relation between specific volume and mixture
fraction. This procedure guarantees that mass is ex-
actly conserved in the solution. The physical quantity
of actual interest is the radial temperature profile at
the instant of burnout. At burnout, the flame sheet
value Zf and corresponding density qf have moved
to the point r � s � 0. For all later times, Z � Zf

everywhere. Thus, the relation between r � (qo/
q�)1/3 Ror̃ and the (s, t) coordinate system becomes

3 q�3 3r̃ � x � � 1 (F(x, s)� �Z qf f

� F(�x, s)) (31)

1 1�x 2 s3F(x,s)� (x �1)erf � exp� � � �6 3 p2 s�
21�x

� (1�2s�x(x�1)) (32)� � � � �
2 s�

Equations 29–32 implicitly define the solution for
the mixture fraction. The major species are also lin-
early related to the mixture fraction. Use of these
relations together with the equation of state then
yields the temperature distribution. The dimension-
less burnout time sb is the unique solution of the
equation Z(0, sb) � Zf. Substituting this value into
the above equations and state relations then yields
the combustion-generated starting temperature pro-
file.

Results and Discussion

Calculations were performed using acetylene as
the fuel in a 21% O2/79% N2 oxidizing environment
generating H2O and CO2 in stoichiometric propor-
tions. While fires do not typically yield combustion
products in stoichiometric proportions, the tem-
perature fields generated by the calculation are rep-
resentative enough to illustrate the theory. An ex-
plicit, variable time step, second-order, Runge-Kutta
method was used to time-step the integro-differen-
tial equation 22. An approach based on Romberg’s
method was used to compute the integral in equa-
tion 22. The kernel, equation 23, is not singular but
does have a discontinuity at y � yo. Results using
increasingly fine grids were compared to ensure that
there was no grid dependency.

All results shown here are for a spherical fuel blob
with initial radius Ro � 5 mm and jRo K 1. As
discussed above, the initial condition was obtained
from a mixture-fraction-based model for the com-
bustion of a spherical fuel blob, equations 29–32,
which did not include radiative transfer. Choosing j
such that jRo K 1 ensured that the combustion
burnout time was much shorter than the character-
istic timescale in the radiation fluctuation model.
Fig. 1 is a plot of the time evolution of temperature
profiles as obtained from the mixture fraction-based
model. The solid curve represents the temperature
at burnout and was used for the initial condition in
equation 22.

Figures 2 and 3 show the evolution of temperature
profiles for two Boltzmann cases (i.e., two j cases):
B � 0.5 and 0.05, respectively. Times are identical
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Fig. 3. Temperature profiles for the B � 0.05 case.

Fig. 4. Profiles of the radiation-induced velocity,
B � 0.5.

Fig. 5. Profiles of the diffusion-induced velocity,
B � 0.5.

Fig. 6. Profiles of the radiation-induced velocity,
B � 0.05.

to those in Fig. 1. Both Fig. 2 and Fig. 3 show that
radiation energy transfer significantly increased the
temperature decay (compare to Fig. 1). The decay
was most rapid initially, while the temperature was
relatively high.

Radial profiles of the radiation- (urad) and diffu-
sion- (udiff) induced components of the velocity, ��
(see equation 13), are plotted in Figs. 4 and 5, re-
spectively, for the B � 0.5 case. The profiles are at
the same times as in the previous figures. It is clear
that the radiative flux was the dominant contributor
to the velocity. For example, at the earliest time
(solid line), the smallest value of urad at r � �15 mm

was larger than the maximum value of udiff. The ef-
fect of radiation absorption can also be seen: the pro-
files for udiff are much more confined radially. For
this Boltzmann case (e.g., heavy soot loading), it was
essential that the numerical computation include ra-
diative heat transfer to accurately simulate the ve-
locity behavior.

In the B � 0.05 case (see Fig. 6), urad was also
larger than udiff but was smaller than urad in the B
� 0.5 case. This may seem contrary to the interpre-
tation of B as the ratio of conduction energy flux
over radiatively induced energy flux. It should be
noted that B(see equation 22) is the ratio of the di-
vergence of the fluxes. In the B � 0.5 case, the
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length over which radiative absorption occurs was
much smaller than the B � 0.05 case. This resulted
in a relatively large radiative flux (and therefore ra-
diatively induced velocity) over length scales at
which diffusion was relevant.

Conclusions

A theory describing the coupling between radia-
tive transport, thermal conduction, and velocity fluc-
tuations in postcombustion gases was presented. The
emission and absorption of radiant energy were
taken to be dominated by soot, distributed uniformly
in space. The model can be thought of as describing
any postcombustion scenario in which the absorp-
tion coefficient is spatially uniform. Within the
framework of the low Mach number combustion
equations, an exact representation of the velocity
and radiation fields instantaneously induced by fluc-
tuations of any magnitude in the temperature was
developed. This result was used to derive a single
scalar integro-differential equation for the tempera-
ture that incorporates the conservation of mass, en-
ergy, and radiation. Some consequences of the the-
ory were illustrated by studying the response
generated by a spherically burning fuel mass. For
example, the dominance of radiation over diffusion,
in terms of determining the magnitude and spatial
range of velocity fluctuations, was clearly seen.
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COMMENTS

Carlos Fernadez-Pello, University of California—Berke-

ley, USA. Why do the thermal effects appear in the poten-
tial field and not in the solenoidal field?

Author’s Reply. In general, temperature fluctuations af-
fect the solenoidal field as well as the potential field. How-
ever, the time scale for a significant response is very dif-
ferent for the two components of the velocity field. A local
temperature gradient changes the convective derivative of
the circulation about a material fluid element. Thus, the
temperature gradient must persist for some time before
the local vorticity can build up enough to affect the sole-
noidal field. The potential field, by contrast, generates a
finite response instantaneously according to the low Mach
number combustion equations. In reality, this means that
the time scale for the response to be effective is the passage
time for a sound wave across the material element. In ap-
plications where the low Mach number equations are valid,
such as most fire scenarios, the potential field will change
much more rapidly than the solenoidal field under the in-
fluence of a given temperature fluctuation. The response

is also more localized spatially, as it is confined by the ab-
sorption length scale in the vicinity of the fluctuation. The
spherical fluctuation was chosen for the numerical example
used to illustrate the theory because in a spherically sym-
metric geometry, vorticity is kinematically impossible.

●

Jay Gore, Purdue University, USA. Thank you for de-
picting an important effect. In my opinion, this effect sel-
dom appears in the combustion literature because of its
masking by the uncertainties in the volumetric heat-re-
lease-rate models. Inclusion of the volumetric radiation
sink/source term will in fact help better calibration of the
heat-release-rate models. Therefore, this is a very impor-
tant contribution.

Author’s Reply. Thanks for your support. It would be
very interesting to devise an experiment that can measure
this effect directly.
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